S(t)=-16t^2+64t+100

Simple and best practice solution for S(t)=-16t^2+64t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S(t)=-16t^2+64t+100 equation:



(S)=-16S^2+64S+100
We move all terms to the left:
(S)-(-16S^2+64S+100)=0
We get rid of parentheses
16S^2-64S+S-100=0
We add all the numbers together, and all the variables
16S^2-63S-100=0
a = 16; b = -63; c = -100;
Δ = b2-4ac
Δ = -632-4·16·(-100)
Δ = 10369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{10369}}{2*16}=\frac{63-\sqrt{10369}}{32} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{10369}}{2*16}=\frac{63+\sqrt{10369}}{32} $

See similar equations:

| 6(x+5)+5=2(x-4)+38 | | -2x/5x=8/15 | | x/2+4=0 | | 2x+35+3x=180 | | -10-x+2x=-10 | | 3x+9+8x+15=90 | | 22/3x=23/5 | | s/6-3=1 | | -20v=4v^2=25 | | (x+6)/4=11 | | 2x+3x*3x=100 | | -5a-8+a=45/3 | | 0.5x^2+6x+38.5=0 | | -4(8+7x)-5(x+8)=60 | | w/9+48=55 | | 350-156x-12x^2=0 | | 3.800=3.8x10 | | 12+3x=x-4 | | |x-5|=5 | | (20-3x)+x=180 | | 32-x/2=10 | | 8x+5+2x+15=180 | | 14+t/11=17 | | 9(h-81)=81 | | 4r-13r=81 | | 8+5/x-1=5 | | 22=1/4x+2/3x | | x/2=34/7 | | 7/x+2=16 | | t/4+15=21 | | x+6*3=-6 | | 2j+2=12 |

Equations solver categories